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ABSTRACT: 

 The aim of this paper is reduction of torque and flux ripples in transient and steady state response of Direct 

Torque Control (DTC) for Induction Motor drive using intelligent technique. This proposed control to improve the 

torque, speed and flux response will be achieved with the Artificial Neural Network (ANN) DTC than the 

Conventional DTC (CDTC). In this paper DTC system using ANN is successfully implemented on three phase 

induction motor to optimize the flux and to improve the performance of fast stator flux response in transient state. 

To improve the performance of DTC with the modern technique using ANN approach is implemented, and 

performance of ANN DTC compared with CDTC is done, hence the ANN approach shows the better performance. 

The performance has been tested by using MATLAB/SIMULINK and NEURAL NETWORK toolbox. 

Key words: Direct Torque Control (DTC), Artificial Neural Network (ANN), and Conventional DTC (CDTC). 

1.0 INTRODUCTION 

The induction motor is work horse in all industrial applications due to its well-known advantages of simple in 

construction, ruggedness and inexpensive and are available at all power ratings.  In the field of power electronics 

enables the application of induction motors for high performance drives were traditionally replaced the DC motors 

were applied. The modern sophisticate control methods of induction motor drives offer the same control capabilities 

as high performance four quadrant DC drives. Induction motor drives controlled by Field Oriented Control (FOC) 

have been till now employed in high performance industrial applications, has achieved a quick torque response, and 

has been applied in various industrial applications instead of DC motors. It permits independent control of the torque 

and flux by decoupling the stator current into two orthogonal components FOC, however, is very sensitive to flux, 

which is mainly affected by parameter variations. It depends on accurate parameter identification to achieve the 

expected performance. During the last two decade a new control method called Direct Torque Control (DTC) has 

been developed for electrical machines. DTC principles were first introduced by Depenbrock and Takahashi. [1-3]  

In this method, stator voltage vectors is selected according to the differences  between the reference and actual 

torque and stator flux linkage. The DTC method is characterized by its simple implementation and a fast dynamic 

response.  Furthermore, the inverter is directly controlled by the algorithm, i.e., a modulation technique for the 

inverter is not needed. However if the control is implemented on a digital system, the actual values of flux and 

torque could cross their boundaries too far. The main advantages of DTC are absence of coordinate transformation 

and current regulator; absence of separate voltage modulation block.  Common disadvantages of Conventional DTC 

are high torque ripple and slow transient response to the step changes in torque during start-up. For that reason the 

application of Intelligent Technique attracts the attention of many scientists from all over the world. The reason for 

this trend is the many advantages which the architectures of ANN have over traditional algorithmic of 

approximating non-linear functions, insensitivity to the distortion of the network, and inexact input data.  In this 

paper we present the evaluation of flux and torque  using the three stator currents is the voltage of input vector, and 

ANN has been devised having as inputs the torque error, the stator flux error and the position of the stator flux in 

which it lies, and as output the voltage vector to be generate by the inverter. The results are discussed and compared 

with CDTC.   
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2.0 MATHEMATICAL MODEL OF INDUCTION MOTOR 

The mathematical model of induction motor by the analysis of dynamic d-q equivalent circuit. The 

dynamic behavior of asynchronous drive is complex to the coupling effect between the stator and rotor phases. The 

figure.1 below shows the dynamic d-q equivalent circuits of an asynchronous drive. The different parameters of 

asynchronous drive are also shown in the figure.1 

       Rs    ωgΨqs    LIs=Ls-Lm       LIs=Lr-Lm        Rr   

 

Vds         ids                                      (ωg-ωr)ѱqr    idr     

              Ψds                  Lm              Ψdr   

 

         Rs     ωgΨps   LIs=Ls-Lm   LIs=Lr-Lm         Rr                  

 

Vds         ids                                    (ωg-ωr)ѱqr    idr     Vdr 

              Ψds                  Lm              Ψdr   

 

 Figure.1 Dynamic d-q equivalent circuits of an asynchronous drive (a) d-axis, (b) q-axis  

The flux linkage expressions in terms of the currents can be written from figure as follows:   

 Ψqs= Lsiqs+ Lm (iqs+iqr)  (2.1)                                          

 Ψqr= Lriqs+ Lm (iqs+iqr)  (2.2) 

 Ψqm= Lm (iqs+iqr)    (2.3)                                     

 Ψds= Lsids+ Lm (ids+idr)   (2.4)                                       

 Ψdr= Lrids+Lm (ids+idr)   (2.5) 

 Ψdm= Lm (ids+idr)    (2.6) 

 

The electrical transient model in terms of voltages and currents can be given in matrix forms as 
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Where S is the Laplace operator, dѠ/dt. The speed    in the above equations is related to the torque by the 

following mechanical dynamic equation, 

 

Te = TL + J 
   

  
  = TL + 

 

 
 J 

   

  
     (2.8) 

n terms of stator and rotor currents, the torque can be written as: 

 

Te =  
 

 
  
 

 
  Lm (ird isq - irq isd)   (2.9) 
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2.1 Basic switching table and selection of voltage vectors 

 

The basic working principle of switching table of DTC concept [7] is shown in figure.2. The reference stator 

flux Ψsref, and torque Teref are compared with the actual value of Ψs and Te in hysteresis flux and torque controller 

respectively. The hysteresis flux controller is a two-level comparator while the hysteresis torque controller is a three 

level comparator. 
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Figure 2 shows block diagram of DTC switching table concept 

 

The output signal of hysteresis flux controller is define as given below 

 

Ψserr=1, for Ψs < Ψsref - HΨ             (4.1) 

Ψserr= -1, for Ψs < Ψsref + HΨ          (4.2)   

     

and output signal of hysteresis torque controller are define as given below 

 

Teerr=1, for Te < Teref – Hm            (4.3) 

Teerr = -1, for Te = Teref                 (4.4)       

Teerr= -1, for Te < Teref + Hm         (4.5) 

 

Where 2 HΨ is the flux tolerance band and 2 Hm is the torque tolerance band.On the basis of the torque and 

flux hysteresis status and stator flux switching sector which is indicated by 

 

            α =    
 

 =   
      

        
 )     (4.6) 

 

 Switching table output is a setting of switching devices of the inverter: hence DTC technique [8] selects the 

inverter voltage vector to apply the asynchronous machine. Figure 3 shows the relationship between the inverter 

voltage vector and stator flux switching sector in which six active switching vectors are: 

 

 V1= [1 0 0], V2= [1 1 0], V3= [0 1 0],  

 V4= [0 1 1], V5 = [0 0 1], V6= [1 0 1]  

 and two zero switching vectors are: 

 

 V0= [0 0 0], V7= [1 1 1]        and also 

 

-30° < α (1) < 30°,   30° < α (2) < 90°, 

90° < α (3) < 150°, 150° < α (4) < 210°,  

210° < α (5) < 270°, 270° < α (6) < 330°.   
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         Figure 3 shows switching vectors     
 
3.0 NEURAL NETWORKS DTC CONTROLLER 

 

The principle of Artificial Neural Networks (ANN) is the one of the most important features for control the 

asynchronous drives. Neural Networks [12] have a self adapting capability which makes them well suited to handle 

the non-linear ties, uncertainness and parameter variations.  In this section we discussed a multilayered feed forward 

neural networks constructs a global approximations to non-linear input, output mapping. 

 

 The basic element of an Artificial Neural Networks (ANN) is as shown in figure 4. 

                               b          
 

  X1 

 

 

  X2                                                                      Y 

   . 

   .   

   . 

  XN                     

 

Figure 4 Basic elements of ANN 

 

 The mathematical model of a neuron is given by the formula is 

                         N 

y = Ψ (∑ wi * xi + b)        (6.1)  

                       i=1       

          

where x1, x2,…xN  are the input signals of neuron, w1,w2,…wN are their corresponding weights and b a bias 

parameter and Ψ is a tangent sigmoid function and y is the output signal of the neuron. It is simply shown in the 

above figure 4. The above can be trained learning algorithm which performs the adaptation of weight of the 

network. The error between target vectors and the output of the ANN is less than a predefined threshold values. The 

output results depends on the following factors are: network architecture, initial parameter values, the details of 

input and output mapping, selected  training data set and the learning rate constant. 

 

 

 

 

   ∑  Ψ (a) 
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3.1  Learning algorithm in ANNs 

 

 The levenberg-marquardt back propagation techniques have been used to train the ANN. generalization in 

regions of the input space where little or no training data are available. The most popular supervised learning 

algorithm is back propagation which consists of forward and backward action. In ANN the forward step, the free 

parameters of the network are fixed and the input signals are propagated throughout the network from the first layer. 

In this forward phase, we compute a mean square error 

 

 E (k) = 
 

 
  ∑                

    
     (6.2) 

 

 Where, di is the desired response, yi is the actual output produced by the network response to the input xi, k 

is the iteration member and N is the number of input-output training data. 

 In second step of the backward phase the error signal E (k) is propagated to entire network, to perform 

adjustments upon the free parameters of the network in order to decrease the error E (k). The weights associated 

with output layer of the network, its formula is  

 

wji (k+1) = wji (k) - Ψ 
     

         
     (6.3) 

 

 In this learning method, the value of ᶯ has to be chosen carefully to avoid instability because, the large 

value of ᶯ may accelerate the ANN learning and consequently faster convergence, but may cause oscillation in the 

network output, whereas low values will cause slow convergence. To ensure fast convergence, we change the 

formula of equation as rewrite, where α is a positive constant called momentum constant. 

 

 wji (k+1) = wji (k) - Ψ 
     

         
 + α Δ wji (k)  (6.4) 

 

 The flowchart shows the back propagation [13] training process of an ANN is trained properly; it must be 

adequately tested using data which is different from the training set in order to test the validity of the model. 

 

3.2 Structure of ANN for DTC 
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Figure 5 shows the structure of ANN 
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The basic concept and structure of DTNNC method for asynchronous drive is shown in the figure 5. The 

ANN replaces the switching table selector block [14,16,20] and the two hysteresis controllers.  The figure 6 shows 

the proposed neural networks have three layers, i.e., input layer, hidden layer and the output layer. The input layer 

has N neurons, output layer has only one neuron and hidden layer has depends on the input layer and the purpose of 

control. The ANN inputs are the error between the estimated flux value and its reference value, the difference 

between the estimated electromagnetic torque and the torque reference and the position of flux stator vector 

represented by the number of corresponding sector. The output layer is depends upon the inputs and weights of 

ANN. 

  

3.3 Simulation results of ANN 

 

 The simulation results of ANN is excellent torque and flux tracking [15-20] can be observed torque ripple 

is reduced for a considerable rate and stator current is sinusoidal this is shown in figures. The group data which train 

with back propagation algorithm. The q axis is different state switching which is normalized and denote the output 

without training and with training respectively. 

 

 
               Figure 6 shows the speed response of motor 

 

                   

 

 

 
 

    Figure 8 show the electromagnetic torque response 

 

 

 

 

 

Figure 7 shows the stator current response 
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4.0 CONCLUSION AND FUTURE WORK 

 

In this work an improves torque, speed and flux  

response was achieved with the ANNDTC than the CDTC. The performance has been rested by simulation using 

MATLAB/SIMULINK. The results show a reasonable improvement by flux optimization, the main improvements 

are as follows: 

 

 Fast stator flux response in transient state 

 Reduction of torque, flux and current ripples in transient and steady state response 

 No flux drooping caused by the sector changes circular trajectory 

 Reduction of speed ripples in transient and steady state response 

 Implementation made easy, because simple algorithm to implemented in ANNDTC. 

 

 The future work to improve the performance of  rotor speed, torque and flux ripple reduction carried out by 

using combined intelligent techniques. 
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